Beta activity: a carrier for visual attention

Andrzej Wróbel

Department of Neurophysiology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland, Email: wrobel@nencki.gov.pl

Abstract. The alpha (8-13 Hz), beta (15-25 Hz) and gamma (30-60 Hz) bands of the EEG have been long studied clinically because of their putative functional importance. Old experimental results indicate that repetitive stimulation of the visual pathway evokes synchronous responses at the cortical level with a gain that depends on frequency; oscillations within relevant bands are less damped at subsequent processing levels than others. Our current results show in the cat that cortico-geniculate feedback has a build-in potentiation mechanism that operates at around the beta frequency and activates thalamic cells thus lowering the threshold for visual information transmission. We have also shown that enhanced beta activity is propagated along this feedback pathway solely during attentive visual behavior. This activity consists of 300-1,000 ms bursts that correlate in time with gamma oscillatory events. Beta-bursting activity spreads to all investigated visual centers, including the lateral posterior and pulvinar complex and higher cortical areas. Other supporting data are discussed that are concerned with the enhanced beta activity during attentive-like behavior of various species, including humans. Finally, we put forward a general hypothesis which attributes the appearance of oscillations within the alpha, beta and gamma bands to different activation states of the visual system. According to this hypothesis, alpha activity characterizes idle arousal of the system, while beta bursts shift the system to an attention state that consequently allows for gamma synchronization and perception.

Key words: animals’ LEP, human EEG, resonance frequencies, cortico-thalamic loops, visual information flow: gain and organization, alpha beta and gamma frequency bands, activation states of the visual system
INTRODUCTION

The neuronal mechanisms underlying perception by the mammalian brain are poorly understood. Fast oscillatory (gamma) rhythms are believed to serve as a coactivation mechanism for populations of cells from different brain areas during the feature integration process (Eckhorn et al. 1988, Gray et al. 1989, Bressler 1990, Lopes da Silva 1991, Roskies 1999). Another hypothesized mechanism, attentional selection, posits that the same result is obtained by increasing the relative excitability of cells activated by attended objects or voluntary action (Treisman and Gelade 1980, Crick 1993). The possibility exists that both mechanisms cooperate; the attentional mechanism may activate populations of cells thereby allowing them to synchronize their activity. In a hierarchically organized system like the visual system, this hypothesis would require the harmonized activation of cell assemblies encompassing many processing levels via feedback pathways (Zeki 1993, Crick 1994). In our experiments we first approached the issue by analyzing the neuronal activity in the cortico-thalamic system of cats during attention. These data are discussed together with a few relevant observations from the literature and our own results obtained from human subjects. The paper focuses mostly on the analysis of local field potentials (LFPs) as these better than unitary data mirror the modulation mechanisms (e.g. attention) and allow for more direct comparison with human EEG recordings.

RESONANCE FREQUENCIES IN THE VISUAL SYSTEM

The mammalian visual system is hierarchically organized (Fig. 1). Sensory activation is transmitted from retina through lateral geniculate nucleus (LGN) to the primary visual cortex (V1) and higher visual centers. Principal neurons at extraretinal levels of this system are under inhibitory influence from recurrent interneurons.

![Fig. 1. Simplified scheme of the mammalian visual system. Consecutive processing levels are marked by circles. Notice the reciprocal connections between thalamic and cortical areas. LGN, lateral geniculate nucleus; LP-P, lateral posterior - pulvinar complex; V1 and V2, primary and secondary visual cortex.]

![Fig. 2. A, relative phosphene threshold intensity obtained with alternating electrical stimulation of the human eye (adapted from Motokawa and Ebe 1953); B, amplitude of occipital EEG signal evoked by visual stimulation of the human retina with sinusoidally modulated light of different frequencies (adapted from Utlett and Johnson 1958).]
Separate excitatory feedback pathways control the relay structures. Such a network of recurrent loops may exert various modulatory actions on cellular firing in the frequency domain.

For more than five decades researchers have known that repetitive stimulation of sensory pathways evokes synchronous responses at the cortical level with a gain that depends on frequency. For example, electrical stimulation of the human eye has shown that the phosphene threshold is lowest at 20 Hz and additional local minima are observed around 10 and between 30 and 65 Hz (Schwartz 1947, Motokawa and Ebe 1953, Fig. 2A). Relevant physiological measures were performed by stimulating the retina with sinusoidally modulated light intensity. It appeared that stimuli modulated with 10 and 20 Hz frequencies evoked a high amplitude oscillatory responses in occipital EEG recordings whereas other frequencies produced damped responses at the cortical level (Utlett and Johnson 1958 - Fig. 2B, Montagu 1967, Lopes da Silva 1970a). It has been further shown that such modulation can even be observed at the retinal level (Hughes and Maffei 1965) and the damping coefficients increase at subsequent processing levels in LGN and V1 (Spekreijse et al. 1971). It is obvious that in a system containing excitatory recurrent loops such damping is necessary in order to secure stabilization. It is common to ascribe the damping mechanisms to feed-forward and recurrent inhibitory connections (Ahlsen et al. 1985). Dis-activation of the inhibitory interactions or amplification of the excitatory loops leads to epileptic discharges within the system. Accordingly, we have shown that electrical stimulation of the cat’s visual-radiation provokes resonance oscillatory activity of about 20 Hz frequency in the retinotopically localized cortico-geniculate loop (Wröbel et al. 1998).

With the hypothesis considering visual evoked potentials (EPs) as stimulus-induced LFP rhythms, Basar (1980) found that amplitude-frequency characteristics of these potentials peaked at the same 10 and 20 Hz values, with additional prominent peaks deve-

![Figure 3](image-url)
A. Wróbel

Fig. 4. A, power spectra calculated from the LFP registered in dog visual cortex with eyes closed and during attentive observation of a hole in the screen in expectation of appearance of the reward (adapted from Lopes da Silva et al. 1970, 1991); B, amplitude spectra of the LFPs registered from the visual cortex of the pretrigeminal preparation of the cat after habituation, and during a period in which eyes followed the hand of experimenter moving in vertical direction (Wróbel and Bekisz, unpublished); C, averaged difference of frequency spectra of the EEG registered from occipital electrodes of human subjects at resting and when listening to music or observing complicated posters (32 subjects of 11-13 years age; adapted from Giannitrapani 1970).

ping above 35 Hz (Fig. 3). All the above experiments support the notion that spike trains of distinct frequencies (about 10, 20, and above 35 Hz) pass through the mammalian visual system with the smallest decrement. These frequency bands may be therefore called, resonance frequencies.

FUNCTIONAL MEANING OF THE RESONANCE FREQUENCIES

Clinical experience has shown that the spectral power of the specific EEG signal bands changes with different functional states of the brain. Much interest has been re-
cently focused on the alpha (8-13 Hz), beta (15-25 Hz) and gamma (30-60 Hz) bands. Early observations indicated that general arousal is accompanied by decreased power in the low frequency, alpha band (Berger 1930) which was described as EEG desynchronization. With better quality recordings it turned out that more characteristic for cortical arousal was decrease of amplitude of slow 1-4 Hz oscillations (delta) and the accompanying alpha power could even increase at the same time (Childers and Perry 1970, Bekisz and Wróbel 1993, 1999, Herculano-Houzel et al. 1999). Interesting from this point of view are observations of increased beta activity in subjects habitually using vivid visual imagery as compared to negligible beta activity recorded in subjects with relatively low visual imagery ability (Mundy-Castle 1951, v. Stein et al. 1993). Beta activity in both groups was highly correlated with the observed power in the alpha band (Mundy-Castle 1951).

Prominent beta band activity was registered from the occipital cortex of a dog expecting a rewarding piece of meat to be presented visually (Lopes da Silva 1970b, Fig. 4A) and from occipital electrodes of human subjects performing emotional and cognitive tasks (Ray and Cole 1985). Recording cortical LFPs from the vigilant pretrigeminal cat-preparation we observed the appearance of beta activity when the eyes tracked the hand of the experimenter. This activity ceased after a long habituation period, without any visual stimuli presented (Wróbel and Bekisz, unpublished data, Fig. 4B). Preliminary data showed enhanced beta activity in monkey visual cortex during behavior based on attentional tasks (Graille and Rougel-Buser 1996). On the other hand decrease of beta spectral power was detected in EEG signals recorded from occipital electrodes of subjects perceiving patterned visual stimuli (Giannitrapani 1971, Fig. 4B, v. Stein et al. 1993).

Such confusing results can be explained by the assumption that visual processing organizes cortical activity into specific spatial patterns replacing the global synchronization present during idle state. This hypothesis will be discussed below together with supporting data from our cat experiments. The increased beta activity in the cortical EEG of human subjects has, however, recently been observed during the time-delay preceding a visual differentiation response. This activity was associated with a mechanism of short-term memory (Tallon-Baudry and Bertrand 1999). Our systematic investigations reviewed below suggest that all the described results can be consistently understood by assuming that beta band activity reflects an arousal of the visual system during increased visual attention (Wróbel 1997a).

THE ROLE OF CORTICAL ACTIVATION IN GAIN OF THE RETINO-CORTICAL FLOW OF INFORMATION

Neuronal circuits located in higher levels of the mammalian visual system project feedback pathways terminating on principal cells of the preceding level (Felleman and Van Essen 1991, Zeki 1993). The idea that the descending systems might be used for control of the attention processes is not new (Adrian 1953, Hernandez-Peon 1966, Singer 1977, Sherman and Koch 1986) but it was only recently that the underlying neural mechanisms were demonstrated (Lindström and Wróbel 1990, McCormick and van Krosigk 1992). The complicated organization of the association cortices, having many intermingled connections (Kaas 1993, Felleman and Van Essen 1991, Zeki 1993), resulted in these mechanisms being investigated first in the less complex cortico-thalamic pathway of the visual system (Lindström and Wróbel 1990).

The ascending fibers of the principal cells of the lateral geniculate nucleus (LGN) in the cat send collaterals to pyramidal cells of layer 6 of the visual cortex (VI). The cortical neurons project in turn toward the LGN where contacts of their axons on principal cells outnumber all other excitatory synapses (Wilson et al. 1984, Montero 1991). Using intracellular recording techniques we were able to show that cortico-geniculate synapses have a built-in frequency amplification mechanism which reaches maximal values at about the 20-Hz frequency range (Lindström and Wróbel 1990). Based on this observation we then showed that beta-frequency activity transmitted via the cortico-geniculate pathway can depolarize geniculate cells and therefore increase the input-output gain of the geniculate relay (Lindström and Wróbel 1990, Musial et al. 1997).
The role of this rich and potentially powerful descending pathway was obscured for a long time (Kalil and Chase 1970, Geisert et al. 1991) since all experiments were carried out on anesthetized animals and the cells in layer 6 become active only after waking up, as shown by Livingston and Hubel (1981). These authors also demonstrated that the bursting activity of pyramidal cells, which accompanied the waking periods, improved the responsiveness of the geniculate cells (cf. also Coenen and Vendrik 1972). It is clear that the possible functions of the cortico-thalamic projections should be studied in awake animals in which the pyramidal cells in visual cortex are easy to activate and thus operate within their intended physiological limits (Wrobel et al. 1994b, Gray and Di Prisco 1997, Wrobel 1997b). Therefore we planned further experiments on behaving cats which performed conditional tasks requiring shifts in visual attention. We hypothesized that when visual information forms a vital component of a task, the attentive state necessary to gain this information should be accompanied by activation of the cortico-geniculate pathway.

BETA ACTIVITY IN THE CORTICO-GENICULATE SYSTEM INCREASES DURING VISUAL ATTENTION

In an attempt to elucidate whether the spectral power of beta activity increases during visual attention we performed an experiment in which cats were rewarded for proper responses in a spatial differentiation test which required visual or auditory attention in intermingled trials (Bekisz and Wrobel 1993, Wrobel et al. 1994a,b). In brief, cats were trained in a specially designed small wooden cage equipped with two translucent doors in the front. The visual and auditory trials were preceded by a preparatory-stimulus of appropriate modality: a diffuse flash of light or noise from a loudspeaker from behind

Fig. 5. A, B, increase in amplitude and frequency of appearance of beta bursts recorded from cat's visual cortex during expectation of the visual cue (A) and lack of such changes in auditory differentiation task (B). Consecutive 8 rows represent continuously recorded signal from the same electrode in visual cortex (V1') before and after appearance of the preparatory stimuli of corresponding modality; C, D, correlation between beta bursts (marked by vertical markers in A and B) registered by two electrodes in V1 (V1'' signal not shown) during visual (C) and auditory (D) trials. The recorded signal in A and B was filtered in the 16-24 Hz frequency band (adapted from Wrobel 1997b).
the front wall. During the visual trial the cat had to notice the cue stimulus (1 s duration flash of a small light spot) which appeared with 10 to 20 s delay (randomized) on one of the doors. When pressing this door the cat could grab a piece of meat for a reward. Analogously, a short (1 s) noise from one of the loudspeakers placed behind the sidewalls was a cue for solving the auditory differentiation task. This procedure kept the animal in a state of attention to a given modality, starting from a warning up to the cue stimulus, and shifting it to other modality in the subsequent trial. It is important that during the analyzed period of any trial the animal was kept in the same (visual or auditory) sensory environment.

Local field potentials were registered with the use of a set of electrodes chronically implanted into the visual cortex (area 17, V1), auditory cortex (A1) and also the visual thalamic nuclei: lateral geniculate nucleus (LGN) and lateral posterior - pulvinar complex (LP-P). Fourier analysis (FFT) showed that the amplitude of the beta frequency band calculated for either sensory system indeed grew during the period of increased attention to a specific modality. For example, during the period between a visual preparatory signal and cue stimulus we found an increase of amplitude and frequency of appearance of short (300-1,000 ms) bursts of beta oscillations both in LGN and V1 (Bekisz and Wróbel 1993, Wróbel et al. 1994b, Fig. 5). Such enhanced activity was, however, observed only in the successful trials and was absent in those which ended with an erroneous response. This observation indicates that the observed beta activity characterizes a specific attentional state of the visual system (Fig. 6A, B, C).

Our supported hypothesis of cortical control of thalamic transmissions during the attentive state further

![Fig. 6. A, averaged amplitude spectra calculated from signals recorded from cat’s visual cortex during increased visual (thick line) and auditory (thin line) attention in the same experimental session. Each spectrum was obtained from 14 independent signal epochs of 2.5-s duration, taken from successful trials; B, comparison of averaged LFP amplitude spectra from the time periods preceding correct and erroneous behavioral responses in the same session; C, D, amplitude spectra showing spectral content of the signal registered from the primary visual (C) and auditory (D) cortices of other cat, calculated from correct trials in one experimental session. Stars indicate statistical significance in the beta band (t-test, P<0.05). Note that in the frequency spectra of the visual cortex activity calculated for both animals before the correct response the beta band has significantly higher amplitude than in the spectra calculated for auditory and erroneous visual trials. In the spectrum obtained from the auditory cortex, amplitude of the beta band is significantly higher during auditory than visual trials (from Bekisz and Wróbel 1993).]
suggests that beta activity should be propagated through the descending pathway. This we were able to confirm (Bekisz and Wróbel 1993, Wróbel et al. 1994b; Fig. 7) by calculating the Directed Transfer Function (DTF), a method developed to measure the direction and frequency content of the flow of activity between different brain locations (Kamiński and Blinowska 1991). Our preliminary data also indicated that such dynamic cortical input activates retinotopically relevant LGN representations (central vs. peripheral; Wróbel et al. 1994a).

The DTF analysis therefore supported our hypothesis that beta activity is correlated with the mechanism of visual attention and is exerted via the cortico-geniculate pathway. Available EEG data from human subjects suggest that beta signals between higher visual processing levels may also be spread through descending routes (Thatcher et al. 1986, Takigawa and Kidiyoor 1991).

Our experiments revealed that the amplitude of beta activity recorded from V1 area varied with electrode location. These observations suggested that attention-related activation of the visual cortex may be organized in a specific functional pattern. In order to verify this hypothesis we calculated for each animal the normalized correlation coefficient with zero time-lag (cf. Frien et al. 1994, Roelfsema et al. 1997) for all pairs of filtered beta signals recorded from different sites. On auditory trials most of the Pearson correlation coefficients had positive values indicating that beta activity in the visual cortex was globally synchronized. During situations requiring visual attention, most of the correlation coefficients decreased except those with extremely high original values (>0.75). For a few of such pairs the synchronization of the recorded signals was higher in the visual than the auditory trials (Krakowska et al. 1995 - Fig. 8; cf. also Llinas
Beta activity and visual attention

Attention-related changes in human EEG activity have generally been correlated with parallel variation in the alpha-band power (Berger 1930, Ray and Cole 1985, Vanni et al. 1997). There were some observations, however, that indicated that the enhanced beta activity accompanies certain intellectual tasks (Ray and Cole 1985), and some investigators even suggested that this

Fig. 8. A, an example of local field potentials simultaneously recorded by two electrodes (V1', V1'') in the visual cortex of the cat during an experiment on spatial differentiation of visual and auditory trials (cf. Figs. 5-7) and their current correlation. The signals contain only filtered beta frequencies (16-24 Hz). B, relation of averaged correlation coefficients of the signals from visual trials calculated for different pairs of electrodes placed in V1 and difference between these values and coefficients calculated for the same electrode pairs during auditory trials. Pooled data from four cats. Straight line (by least squares method) marks on the abscissa the value 0.75 above which the strength of the correlation grows during visual (in comparison to auditory) trials. See text for details. (From Krakowska et al. 1995).

Fig. 9. A, increase of the amplitude of the beta band (17-20 Hz) in the frequency spectrum of LFP registered in LPI-c (lateral zone of lateral posterior complex, caudal part) during attentive expectation of the visual cue stimulus, compared with the signal spectrum recorded in the auditory situation. Horizontal line above abscissa marks the frequency limit in which spectra differ significantly (P<0.05). B, average EEG frequency-amplitude spectrum registered from the occipital electrode in a human subject in a similar experiment as that described for cats. During anticipation of the visual differentiation stimulus, the beta band has significantly lower amplitude than during the corresponding auditory trials (Wróbel et al., unpublished).
enhancement may be used as an arousal index (Cardenas et al. 1997). Our preliminary results show that the amplitude of the beta-frequency spectrum registered by occipital electrodes decreases with increased visual attention (Wróbel 1998, Fig. 9B). Paradoxical decreases of beta-band amplitude may result from setting the underlying cortical activity into a specific pattern similar to that evoked by attentional mechanisms in the cat’s visual cortex (Fig. 8). Skin electrodes tend to average EEG signals from a large area of the occipital cortex and the amplitude largely depends on the synchronization of all contributing sources. Accordingly, cortical activity of small beta-amplitude, but synchronized over large portion of the cortex, may be regarded as a relatively strong signal, that is, as opposed to a highly activated and synchronized but spatially limited neuronal pool (v. Stein et

Fig. 10. A, B, C, an example of the LFP registered from the cat’s primary visual cortex during an experiment on spatial differentiation of visual and auditory stimuli (A), the same signal filtered to show beta and gamma contents (B) and their envelopes (C). D, correlation between beta and gamma activity with zero time shift is higher in visual than auditory trials (adapted from Bekisz and Wróbel 1999).
al. 1993, Menon et al. 1996). In accordance with such interpretations are results which indicate that a visual stimulus increases beta activity solely in those parts of the cortical representation of the visual field which are engaged in attentive processing (Lutzenberger et al. 1995, Gomez et al. 1998).

GENERAL HYPOTHESIS ON THE ROLE OF BETA ACTIVITY IN VISUAL ATTENTION

Our experiments showed that enhanced beta activity appears during visual attention not only in the primary visual cortex and LGN but also in the higher visual areas (V2, PMLS, not illustrated) and lateral posterior and pulvinar complex (LP-P; Figs. 7 and 9A). LP-P neurons receive descending fibers from layer 5 of the visual cortex and send feedback projections to the recipient cortical layers of primary and higher visual areas (Guillery 1995; Fig. 1). Thus LP-P seems to be in a key position for controlling the bottom-up and top-down streams of visual information processing. Previous investigations have suggested that LP-P is engaged in control of visual attention and selection of salient visual objects (Chalupa 1991, Garey et al. 1991, Robinson and Paterson 1992). Theoretical considerations propose that LP-P is vital for integration of elementary visual features into percepts (Niebur et al. 1993, Olshausen et al. 1993) and even that activity of cortical layer 5 neurons express conscious states (Crick 1994). Our results are in agreement with a model which assigns the role of attention related excitation of specific visual assemblies to the LP-P (Olshausen 1993). According to this model LP-P would provide a source of modulatory activity (searchlight) gating the information about salient stimuli to higher visual centers. From the other side LP-P activity would be controlled by higher centers in the voluntary attentional and recall processes. Such an integrative role of the LP-P complex demands further investigation. Designating the structures encompassed by beta activity during attentive behavior and finding the directions of the information flow in this complex system may reveal basic processes fundamental for visual perception.

We assume that beta activity causes background excitation within specific parts of the visual system with the help of a frequency potentiation mechanism at the synaptic level of the recurrent loops (Lindström and Wróbel 1990; cf. also Whittington et al. 1997). Such activation would allow high frequency synchronization (Steriade et al. 1996) during putative feature binding process (Eckhorn et al. 1988, Gray et al. 1989, Roskies 1999). In favor of such a hypothesis, our recent recordings from the cat’s lateral geniculate nucleus and visual cortex have shown that attention related bursts of beta activity tend to correlate in time with gamma bursts (Bekisz and Wróbel 1999, Fig. 10). Similar phase correlations between beta and gamma cortical rhythms were observed during visual stimulation in the visual cortex of behaving monkeys (Schanze and Eckhorn 1997), although these authors discussed their findings with the view of visual feature linking across different temporal and spatial scales.

The present hypothesis about the role of cortico-thalamic beta activity in attentive perception is quite general and can be easily adapted to higher visual processing levels and also to other sensory systems. Our preliminary data support this notion, showing that large amplitude beta bursts can be observed in the primary auditory cortex of the cat during attentive listening (Bekisz and Wróbel 1993, Fig. 6D). We thus ascribe to beta activity the general role of an attention-carrier, similar to the previously proposed roles of the alpha band in idle arousal and the gamma synchronous oscillations in feature-integration processes. The three resonance frequency bands of the visual pathway may therefore be understood as activation channels used to shift the state of the visual system to consecutively higher functional processing levels: from idle arousal, through attention up to perception. The presented data suggest that each of these levels might emerge from the background set by the previous one.

REFERENCES

