INTRODUCTION

Peripheral nerve injuries can lead to the development of neuropathic pain (NPP). The symptoms affect the quality of daily life and can be unresponsive to conventional treatments (Nickel et al. 2012, Gilron et al. 2013). Although there are some new targets of treatment being issued in these years, such as calcium channel antagonists, NMDA antagonist, potassium channel agonist, sodium channel modulation and vanilloid receptor antagonist, etc, there is no effective therapeutic option for clinical treatment because the poor understand of the mechanism of neuropathic pain (Nickel et al. 2012).

NPP induced by peripheral nerve injury may be the result of a long-lasting increase in synaptic transmission in the spinal dorsal horn (Nickel et al. 2012). DRG neurons typically convey nociceptive information from the peripheral nerve to spinal dorsal horn. Evidence shows GABA-A receptor expressed on DRG neurons (Xiong et al. 2010, Naik et al. 2012). The activation of GABA-A receptor results in neuron’s partial depolarization, which induces the blockade of the following information transmission from DRG to the spinal cord (Enna and McCarson 2006). A previous study has shown down-regulation of the GABA-A receptor in injured DRG neurons after spinal nerve injury might play an important role in the development of increased synaptic transmission in NPP (Naik et al. 2008, 2012). Many lines of evidence have revealed that a long-lasting increases of synaptic transmission, such as the augmented responsiveness and spontaneous activity of the neurons, do not only exist in the injured DRG, but also in the intact DRG adjacent to injured one (L4 DRG in the L5 SNL rats) (Obata et al. 2003, Jang et al. 2007b). However, no report has shown the
functional role of GABA-A receptor of these intact adjacent DRG neurons in the mechanism of NPP.

Consequently, in the present study, we investigated the changes of the GABA-evoked currents in L4 DRG neurons and the effects of exogenous GABA modulation in the L4 DRGs on the symptoms of NPP after L5 SNL in rats. Our overall goal was to devise more effective therapeutic options for patients who suffer from NPP.

METHODS

Animals and reagents

Sixty Sprague-Dawley adult male rats (Faculty of Laboratory Animal Science, Hubei University of medicine), each weighing between 150–200 g at the time of the surgery, were used for experiments in this study. Muscimol (Sigma-Aldrich, St. Louis, MO, USA) is a GABA-A receptor agonist. Bicuculline (Sigma-Aldrich, St. Louis, MO, USA) is a GABA-A receptor antagonist. Both pharmacological reagents were freshly prepared and diluted in a sterile saline solution (400 μg/ml and 3 μg/ml, respectively) at pH 7.4 immediately prior to their application on to the L4 DRGs.

L5 SNL Surgery

All experimental protocols were approved by the Animal Care and Use Committee of Hubei University of medicine. All of the procedures were performed according to the guidelines of the International Association for the Study of Pain in order to minimize the animal’s suffering and minimize the number of animal used. The surgery for the L5 spinal nerve ligation was performed as previously described (Kim and Chung 1992). Briefly, the animals were anesthetized with isoflurane inhalation (3% for induction and 2.5% for maintenance). After the skin incision at the left side of spine at the L4–S2 level, the L5 transverse process was removed and exposed the L5 spinal nerve. The L5 spinal nerve were carefully isolated and tightly ligated with a 6-0 silk thread before suturing of the wound. The sham rats underwent the same procedure but without nerve ligation. Behavioral tests were performed to identify the reliable and stable hyperalgesia state within 3–5 PODs (postoperative days).

Preparation of L4 DRG neurons

Five days after the SNL or sham operation, the L4 DRG neurons from the ipsilateral side of either the sham or SNL rats were dissociated as previously described (Li et al. 2005). After the rats were anesthetized (4% isoflurane) and decapitated, the lumbar segments of the vertebrate column were dissected and longitudinally divided into 2 halves. The L4 DRGs were removed from the intervertebral foramen and transferred immediately into Dulbecco’s Modified Eagle’s medium (DMEM) (Sigma Chemical Co., St. Louis, MO, USA). The attached nerves and surrounding connective tissue were removed using scissors under anatomical microscope. The DRGs were subsequently minced with fine spring scissors, and the ganglion fragments were transferred into a flask containing 5 ml DMEM with 0.05 mg/ml trypsin (type III, Sigma) and 1 mg/ml collagenase (type I, Sigma) and were incubated at pH 7.4 and 35°C for 30–35 min in a
shaking water bath. To neutralize the digestion, 1.25 mg/ml soybean trypsin inhibitor (type II-s, Sigma) was added, and the isolated neurons were placed into a 35-mm Petri dish and kept for at least 30 min before electrophysiological recording.

**Size determination**

We separated the neurons by size. Using a calibrated reticule in the light path of the microscope (Olympus CX41, Japan), the cell diameter was visually determined using an estimated average of the longest and shortest dimensions during the recording. Neurons that were 17–60 μm diameter in size were used, which represented essentially the entire size range of the neurons in the ganglia.

**Patch-clamp recordings**

Whole-cell voltage clamp recordings were performed on acute isolated DRG neurons using the EPC-10 patch clamp amplifier (HEKA Instruments, Germany). The patch pipettes were filled with an internal solution containing (mmol/L): KCl 140,
CaCl\(_2\), 1, MaCl\(_2\), 2.5, HEPES 10, and EGTA 11, at pH 7.2 (adjusted with KOH), and an osmolarity of 310 mOsmol/L (adjusted with sucrose). Neurons were bathed in an external solution containing (mmol/L): NaCl 150, KCl 5, CaCl\(_2\), 2.5, MgCl\(_2\), 1, HEPES 10, D-glucose 10, at pH 7.4 (adjusted with NaOH), and an osmolarity of 330 mOsmol/L (adjusted with sucrose). The series resistance (<15 MΩ) and capacitance were compensated prior to drug application. The GABA (Sigma-Aldrich, St. Louis, MO, USA) was extracellularly applied by gravity flow from an array of fused silica glass tubes (o.d./i.d.=500 μm/200 μm). The distance from the mouth of the tube to the cell was approximately 100 μm. The membrane potential was held at −60 mV. The GABA currents, which were filtered at 2 kHz and sampled at 100 kHz, were recorded after the 100 μmol/L GABA was applied on to the cell. The data were recorded using a Patchmaster software (HEKA, Germany).

**Topical application to the L4 DRGs and treatment protocol**

To test the effects of GABA modulation, we applied 50 μl of muscimol (400 μg/ml) or bicuculline (3 μg/ml) directly on to the right L4 DRGs either at the time of the SNL surgery or on postoperative day 5 (POD 5).

The animals were anesthetized with isoflurane (3% for induction and 2.5% for maintenance), the skin was incised, and the right paravertebral region was exposed. The connective tissue and muscles were removed by iris scissors, thereby exposing the bony structures and the right L4 intervertebral foramen. The transverse processes and the marginal laminar rim caudal to the L4 ganglion were partially removed using a small rongeur to expose the caudal part of the ganglion. To avoid an injury to the ganglion from the needle, a PVC catheter (internal diameter 200 μm) was connected to the microsyringe needle. The tip of the catheter was subsequently placed near the ganglion through the right L4 intervertebral foramen. After 50 μl of the vehicle had been slowly injected into the L4 DRG, the catheter was left in place for at least 3 min to ensure complete delivery of the solution and to avoid potential extravasation outside of the DRG site. Moreover, 50 μl muscimol was sequentially co-administered with 50 μl bicuculline a few minutes apart.

**DRG fluorescein study**

It is possible that the drug solutions could spread to the adjacent DRGs or into areas surrounding the spinal cord. To address this issue, we randomly chose 10 rats and injected a 50 μl test solution of sodium fluorescein (Sigma-Aldrich, concentration 700 μg/100 μl) using the same protocol that was described earlier. Then, we placed back the surrounding tissue (without suturing) and kept the animal anesthetized. After 30 min, the rat was perfused via the aorta with 4% paraformaldehyde. The right L4 and L5 DRGs and the corresponding L4 segment of the spinal cord were harvested and quickly frozen in 2-isobutane until sectioning. Next, we analyzed the images using a fluorescence microscope (Olympus MF51, Japan) equipped with an FITC filter.

---

**Fig. 3.** The amplitude of GABA currents of different L4 DRG neurons in the L5 SNL rats and sham rats. The number on the bar shows the amount of the neurons. * indicates significant differences between the values in the SNL rats and sham rats (P<0.05). The apparent decline was seen in the large and medium neurons in the SNL rats. Error bars = SEM.
Behavioral test

The Electronic von Frey Anesthesiometer (IITC Inc. Life Science Instrument, Woodland Hills, CA, USA) was used to measure the nociceptive response to the mechanical stimulation. Initially, the animals were placed unrestrained in the acrylic cage with a wire grid floor. The rigid tip of von Frey filament (0~90 gram range) was placed beneath the wire grid floor and upward probed the rat’s hindpaw with a gradual increase in pressure. The mechanical withdrawal threshold was automatically recorded when the hindpaw was withdrawn of the paw. Each session included five stimulus presentations at 5 minute intervals, and the mean values of the five readings were used as the mechanical threshold for this test.

We used a thermal paw stimulation system (Hargreaves’s Apparatus, Ugo Basile Inc, Italy) to measure the nociceptive thermal threshold. The plastic chamber (10×20×24 cm) sat on a clear elevated glass floor. A mobile infrared heat source was positioned beneath the glass floor to deliver a thermal stimulus to the plantar side of the hind paw. When the animal felt pain and withdrew its paw, the instrument would automatically shut off the timer and record paw withdrawal latency (PWL) with a precision of ±0.1 s. To prevent thermal injury, the light beam was automatically discontinued for 20 s if the rat failed to withdraw its paw. For each experiment, the procedure was repeated five times with 5 minute intervals, and the mean value of the five readings was used for analysis.

Statistical analysis

The data are presented as means ± standard error of the mean (SEM). The electrophysiological data were statistically compared using Student’s t test and the χ-square test. The behavioral data were statistically analyzed with an ANOVA test, and the post-hoc Dunn’s multiple comparison test was used to compare the means of each group. *P<0.05 were considered to be statistically significant. All of the statistical analyses were performed using the SPSS software (version 13.0; SPSS Inc., Chicago, IL, USA).

RESULTS

Nociceptive response of rats with L5 SNL

The rats with the L5 SNL (n=20) developed characteristic postural manifestations in the ipsilateral hind leg and also displayed cupped hindpaws. There was a significant decrease of the mechanical withdrawal thresholds (Fig. 1A) and PWLs (Fig. 1B) on the side ipsilateral to the nerve injury compared with pre-operative baseline, which was interpreted as mechanical allodynia and thermal hyperalgesia, respectively. The mechanical allodynia was observed as early as the first day after injury and lasted up to

---

**Fig. 4.** The incidence of GABA currents in the L4 DRG neurons of SNL rats and sham rats. * indicates the significant difference between these groups (P<0.05). (A) The significant decrease of the incidence of GABA currents in total L4 DRG neurons in SNL rats. (B) The significant decrease of the incidence of GABA currents in medium and large L4 DRG neurons in SNL rats.
10 days as well (Fig. 1A). The thermal hyperalgesia was apparent on the third day after injury and lasted up to 10 days (Fig. 1B). The sham-operated rats \((n=5)\) displayed no postural manifestations, hyperalgesia and allodynia after operation (Fig. 1A, B).

**GABA currents on the DRG neurons**

Dissociated neurons obtained from five sham rats \((n=45)\) and six SNL rats \((n=45)\) were divided into three groups according to cell diameter: small DRG neurons \((24.6 \pm 4.5 \mu m, n=30)\), medium DRG neurons \((33.4 \pm 3.7 \mu m, n=30)\) and large DRG neurons \((45.7 \pm 4.9 \mu m, n=30)\). When 100 \(\mu M\) GABA was applied to L4 DRG neurons that were voltage clamped at \(-60\) mV, some of the large and medium neurons in both groups displayed an inward current with a characteristic rapid desensitization (Fig. 2C–F). There is almost no current activation in small neurons (Fig. 2A,B). Furthermore, compared with the sham rats, the decline in the amplitude of the GABA current was found in the L4 DRG neurons after L5 SNL. This decline was apparent in the large and medium neurons \((P<0.05)\) but not in the small L4 DRG neurons (Fig. 3).

![Image](image_url)
Incidence of GABA currents on the DRG neurons of SNL rats

The GABA current was seen in 15/45, or 33% of the neurons of the SNL and in 28/45, or 62% of the neurons from the sham. The neurons obtained from the SNL rats showed a much lower incidence of GABA currents than those obtained from the sham rats ($P<0.05$) (Fig. 4A). In the sham and SNL rats, the higher incidence of GABA current was apparent in the large neurons and medium neurons. The incidence of the GABA current in the medium and large neurons was significantly decreased in the SNL rats compared with the sham rats ($P<0.05$) (Fig. 4B).

DRG fluorescein study

We observed a high uptake of fluorescein into the right L4 DRG in all 10 rats but none in the ipsilateral L4 dorsal horn and L5 DRG (Fig. 5).

Nociceptive responses in the SNL rats after GABA-A receptor modulation on the L4 DRG at the time of injury

In comparison with the rats that received saline injection ($n=10$), the rats that received 20 μg muscimol ($n=10$) displayed a significant increase in the mechanical withdrawal thresholds at 10 days post surgery.
The muscimol injected rats still exhibited a significant decrease in the mechanical threshold at 10 days post-surgery compared with the pre-surgical baseline value \((P<0.05)\) (Fig. 6A). Acute muscimol injection into the DRG had no effect on the PWLs in the SNL rats, even at 10 days post surgery (Fig. 6B). In contrast, an acute L4 DRG administration of 0.15 μg bicuculline \((n=10)\) produced a significant decrease in the mechanical withdrawal thresholds (Fig. 6A) and PWLs (Fig. 6B) in the L5 SNL rats at 10 days post surgery \((P<0.05)\). Furthermore, compared with the pre-surgical baseline value, a significant decrease in the PWLs was observed on the first postoperative day in the bicuculline-treated rats \((P<0.05)\) (Fig. 6B). The co-administration of muscimol with bicuculline \((n=10)\) produced no significant effect on the mechanical withdrawal thresholds (Fig. 6A) and PWLs (Fig. 6B) \((P>0.05)\).

**Nociceptive responses in the SNL rats after GABA-A receptor modulation on the L4 DRG after development of NPP**

On POD 5, when the thermal hyperalgesia and mechanical allodynia were stable, 20 SNL rats were randomly assigned to receive direct administration of either saline or 20 μg muscimol on to the L4 DRG. As shown in Figure 7, the patterns of development of mechanical and thermal hypersensitivity during the first 5 days post surgery were similar among rats that were treated with saline. Both the mechanical withdrawal thresholds (Fig. 7A) and PWLs (Fig. 7B) in the animals treated with muscimol had significantly increased on PODs 6 and 7 compared with that of the animals treated with saline \((P<0.05)\). By POD 8, the mechanical withdrawal thresholds (Fig. 7A) and PWLs (Fig. 7B) began to decrease. By POD 9, the mechanical withdrawal thresholds (Fig. 7A) and PWLs (Fig. 7B) were indistinguishable from that found in saline-treated rats \((P>0.05)\) (Fig. 7).

**DISCUSSION**

A loss of synaptic inhibition (i.e. disinhibition) has been increasingly recognized as an important process in the development and maintenance of neuropathic pain (Nickel et al. 2012). It has been established that GABA can bind with the GABA-A receptor on DRG neurons, and open the Cl⁻ ion channel, leads to the inward currents (Nishi et al. 1974). By causing sustained depolarization of the sensory neurons, GABA-A receptor may affect the ability of the sensory neurons to fire when stimulated (Price et al. 2009, Zeilhofer et al. 2009). The present results also found this kind of inward currents. Furthermore, this GABA-activated current mostly presents in the large and medium DRG neurons. Small neurons rarely showed the GABA-activated current.

In our study, we found the incidence of GABA currents decreased in large and medium L4 DRG neurons in SNL rat. It indicates that some medium and large neurons with GABA-A receptor may lose in the corresponding DRG. Furthermore, as for a single neuron, the amplitude of GABA currents on the medium or large L4 DRG neurons also decreased, which indicates a decrease in GABA-A receptor density on a single neuron. The GABA currents' decreases either in whole DRG or in single DRG neurons means a decrease of GABAergic transmission on the spine pre-synaptic inhibition, which may lead to the increased activity in corresponding DRG. Evidences have shown that the afferent stimulation through the uninjured DRG has the crucial role in the development of mechanical allodynia in NPP (Jang et al. 2007a, Ji et al. 2007, Shehab et al. 2008). The augmented activity in intact adjacent DRG neurons may result in more stimuli transmitted from the afferent nerve to spine, and result in the hypersensitivity existing in the NPP. This may be the mechanism of the neuropathic pain. Of course, besides the quantitative alteration of GABA-A receptor, the characteristic alteration of GABA-A receptor, such as conductance properties, may also result in the amplitude decrease of GABA-A currents under whole-cell patch-clamp recording. The identification of the reason may depend on the further study with single-channel patch-clamp techniques.

Additionally, we intended to topically inject GABA-A receptor modulators into the corresponding DRG. As to the focused therapy methods, we have manifested the high uptake of fluorescein in the right L4 DRG, but almost none in the ipsilateral L4 dorsal horn and L5 DRG, indicating that the agents can be successfully constrained in the L4 DRG with topically injection. Indeed, application of agents into the DRG has been used in many studies (Puljak et al. 2009).
This approach has the advantage that therapy targeting the DRG specifically avoids systemic and CNS toxicity during treatment.

The previous study has established that spinal administration of GABA-A receptor agonist only partially alleviates neuropathic hypersensitivity, and they believe that the GABA-A receptor in the spinal cord is not the crucial factor in the development of NPP (Munro et al. 2008). In fact, many findings suggest a close complex communication between DRG and the spinal dorsal horn, which may be crucial in controlling GABA availability (Labrakakis et al. 2003, Liu et al. 2004). The modulation of GABA-A receptor in the DRG may prevent the biochemical or biophysical changes in the corresponding spinal dorsal horns, which, then, cause the prevention and alleviation of NPP. In this study, we did find that Muscimol applied to the L4 DRG at the time of ligation caused an obvious alleviation of mechanical allodynia in rat of NPP. This effect was blocked by Bicuculline. This may be the obvious evidence to show the important role of GABA-A receptor of intact DRG in development of NPP. But, when Muscimol was applied to the same DRG with the same dose after NPP was fully developed, its pain-alleviating effects were short lived. This means the minor role of GABA-A receptor in the maintenance of NPP. It can be explained through the possible down-regulation or losses of GABA-A receptors in the DRG neurons at later stage of SNL injury, which may lead to the decrease of the effects of GABA-A receptor agonist. The other reason may be that the GABA has been down-regulated in the stage of NPP. The exogenous GABA can only transiently compensate this lack. The exact reason may need us to advanced study.

In this study, we also found the different effects of GABA agonist on mechanical allodynia and thermal hyperalgesia. Muscimol, applied to the L4 DRG at the time of injury, only caused transient alleviation of thermal hyperalgesia, whereas can alleviate the mechanical threshold for up to 10 days. It can be explained by the absence of GABA currents in most of small DRG neurons, which was found in the previous electrophysiological study. This absence suggested that the presynaptic inhibitory effects mediated by the GABA-A receptors’ activation are less in the small DRG neurons. According to the past study, small DRG neurons largely receive the signals from the C afferent fibers (Harper and Lawson 1985). The afferent fibers responsive to heat stimuli were all C-fibers, and the sensitization of uninjured C nerve contributes to the neuropathic pain (Shim et al. 2005). Consequently, the alleviation of thermal hyperalgesia mediated by the GABA-A receptor modulation may be less and transient.

**CONCLUSION**

In conclusion, an early intervention aimed at the GABA-A receptor in the adjacent intact DRG neurons can induce long-lasting alleviation of mechanical hypersensitivity, which infers that the restoration of the GABA-A inhibition system in the adjacent intact DRG may be a potential approach to be used in the management of NPP.

**ACKNOWLEDGMENTS**

This work was supported by the grants from National Natural Science Foundation of China (81341111), Nature Science Foundation of Hubei province of China (2013CFC036), Key Specialty Construction Project of Pudong Health and Family Planning Commission of Shanghai (Grant No. PWZz2013-17).

**REFERENCES**


