Antidepressant-like and anxiolytic-like effects of mild hypobaric hypoxia in mice: possible involvement of neuropeptide Y

Małgorzata Duszczyk1, Marcin Gamdzyk1, Apolonia Ziembowicz1, Paweł M. Boguszewski2, Jerzy W. Łazarewicz1, and Elżbieta Salińska1*

1Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland, 2Laboratory of Limbic System, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland, *Email: esalinska@imdik.pan.pl

INTRODUCTION

It has been established that mild hypoxia produced either by hypobaria or via brain ischemia that is sub-lethal to neurons, induces brain tolerance to subsequent severe hypoxia and ischemia in various animal models (Bergeron et al. 2000, Stroev et al. 2004, Rybnikova et al. 2005a, 2005b, Duszczyk et al. 2009). In addition, it has been demonstrated that preconditioning with repetitive sessions of moderate hypobaric hypoxia reduces persistent behavioral and hormonal depressive symptoms in rats exposed to unpredictable and inescapable footshock in the learned helplessness paradigm (Rybnikova et al. 2007a, 2007b, Baranova et al. 2010, 2012). These authors demonstrated that training with hypobaric hypoxia modulates the responses of the hypothalamic-pituitary-adrenal axis and the expression of NGFI-A and c-Fos in the brain when exposed to stress (Rybnikova et al. 2007a, 2007b, Baranova et al. 2010, 2012). These previous studies have been conducted exclusively on rats, and it is not clear whether this antidepressant-like behavioral effect of hypoxic preconditioning will be detected in other animal models and using different behavioral tests.

Our previous studies demonstrated that precondi-
tioning with hypobaric hypoxia which induces tolerance to global forebrain ischemia in Mongolian gerbils, is accompanied by a significant rise in the number of neuropeptide Y (NPY)-positive neurons in the hippocampus (Duszczyk et al. 2009). NPY is a 36-aminooacid peptide which is widely distributed in the brain, particularly in GABA-ergic interneurons in the hippocampus and cortex. NPY modulates excitatory neurotransmissions, which has been implicated in the mechanisms of affective disorders (Morales-Medina et al. 2010). Anxiolytic- and antidepressant-like effects of neuropeptides NPY and VIP were observed in mice and rats (Redrobe et al. 2002, Karlsson et al. 2008, Ivanova et al. 2014; for reviews see: Heilig 2004, Madaan and Wilson 2009, Morales-Medina et al. 2010). These data may suggest involvement of NPY in the mechanism of anxiolytic- and antidepressant-like effects of the hypoxic preconditioning. However, it is not known whether hypobaric hypoxia in mice results in the increase in the level of NPY in the brain.

The aim of this study was to examine whether repeated treatment with mild hypobaric hypoxia induces antidepressant- and anxiolytic-like effects in mice, and to determine if these effects coincide with increases in the NPY content in the hippocampus.

EXPERIMENTAL METHODS

Animals

Experiments were performed using adult male mice Balb/c57 of 20–24 g body weight, fed and supplied with water ad libitum. They were bred in the Animal Colony of the Mossakowski Medical Research Centre, Polish Academy of Sciences. In accordance with domestic and international regulations, all efforts were made to minimize animal suffering and the number of animals required. The Third Local Ethical Committee in Warsaw approved all the procedures. The animals were divided into control and experimental groups, of n=5–11 mice per group, and groups were assigned to particular behavioral test sessions or immunochemical studies. The experimental groups were submitted to hypoxic preconditioning in a hypobaric chamber, whilst the control groups were placed in the hypobaric chamber but were not subjected to any hypoxic treatment. Since in the tail suspension and the open field tests as well as upon determination of the level of NPY in the brain, there were no differences between the control groups examined 24 and 48 hours after preconditioning, they were combined into one common control group.

Hypobaric hypoxia

The procedure for hypoxic preconditioning was performed exactly as has been described previously (Rybnikova et al. 2007a, 2007b, Duszczyk et al. 2009). Briefly, three episodes of mild hypobaric hypoxia were produced in the hypobaric chamber by maintaining the pressure at 0.47 atm (equivalent to an altitude of 5000 m above sea level or 10% of the O2 in normobaric air) for 2 h daily, and the hypobaric sessions were repeated on 3 consecutive days.

Tail suspension test

The methodology of the tail suspension test was as described by Steru and others (1985) with minor modifications. A paper clip was taped to the tail of each individual mouse, approximately 2 cm from the tip of the tail. Mice were suspended vertically for 6 min at a distance of 30 cm above the surface. Data from the first 2 min of the test were not collected, then a trained observer, blinded to the animal’s group, recorded how long each mouse spent immobile during the final 4 min of the test. The duration of immobility is expressed in percent of the recorded period of the test.

Elevated plus maze

The elevated plus maze testing was performed according to methodology described by Handley and Mithani (1984), considering modifications suggested by Walf and Frye (2007). Testing was performed in a Plexiglas plus-maze elevated to a height of 35 cm. The apparatus consisted of two open arms and two closed arms both of the same dimensions (30×8 cm), with clear Plexiglas walls 20 cm high and arranged so that both the open and closed arms faced each other. The floor of the maze was constructed of black Plexiglas. Test sessions lasted 5 min. The observer, blinded to the animal’s group, was situated 2 m from the maze. Evaluation of the anxiolytic-like effects was based on behavioral measures of the time spent in the open and closed arms or in the center platform (expressed as a percentage of total test time), and on
the number of open arm entries (OAE). An entry into a specific arm was scored when a mouse placed all four paws into the arm. The other parameters studied were the number of head dipping (DIP, exploratory movement of head/shoulders over the sides of the maze), and stretch-attend postures (SAP, exploratory posture in which the mouse stretches forward and retracts to original position without locomoting forward) (Ganu et al. 2011).

Open field test

The open field arena was 70×70 cm with black walls and a white gray floor. It was lit by diffuse light and was virtually divided into 25 squares to assist with data analysis (see below). The test was initiated by placing each mouse in the middle of the arena. The behavior of the animals during 10-min sessions was continuously recorded using a videocamera, this allowed for subsequent analysis without the interference of the experimenter. The arena was cleaned after each mouse with a 70% solution of ethanol and dried. The data were analyzed using Ethovision XT 11.5 software (Noldus, Wageningen, The Netherlands). The analyzed parameters included the total distance traveled (cm); the total number of crossings of the borders of the squares dividing the arena which was calculated as the sum of entries to each of the squares; the frequency of entering the central part, the borders and corners of the arena; and the time (sec) spent by the animals immobile or in locomotion.

NPY immunochemistry

After termination of the open field test, mice were sacrificed by i.p. injection with a lethal dose of morbital (1.5 mg/kg). Brains were removed, chilled, placed on ice-cooled plates, purified from blood and meninges and dissected to obtain the frontal cortex, hippocampus and hypothalamus as described by Glowinski and Iversen (1966). These samples were weighed, frozen on dry ice and stored at −70°C for further processing. NPY extraction was performed using procedures described by El-Karim et al. (2003) and Baticic et al. (2011). The samples were homogenized at 4°C in the extraction solution (8 ml/g of tissue) which contained 0.5 M acetic acid and commercially available Calbiochem inhibitors of proteases and phosphatases (Merck KGaA, Darmstadt, Germany). Homogenates were heated for 10 min at 95°C, then chilled to 4°C, centrifuged for 20 min at 2200 g and then the supernatants were stored at −70°C. Protein concentration was measured by the method of Bradford (1976) and NPY content was determined using a commercial EIA kit (Merck KGaA, Darmstadt, Germany) according to the manufacturer’s instruction.

Statistics

The results are presented as mean values ±SEM. Statistical significance of differences between means was tested using the unpaired Student’s t-test or ANOVA test (Microsoft Excel v. 2007 and R version 3.22). Significance was taken at P<0.05.

RESULTS

After the initial period of escape-oriented movements, all the tail suspended animals developed an immobile posture at some point during the final 4-min period of the test. In the control groups immobility lasted about 45% of the time. Immobility was significantly reduced to 30.8% in mice tested 24 h after the last hypobaric session (P<0.01) (Fig. 1). However, in mice tested 48 h after preconditioning, although immobility lasted for 36.9% of the time, this value was found not to be significantly different from that of the control (Fig. 1).

The elevated plus maze test (Fig. 2) was performed exclusively 48 h after the last hypobaric session. The animals from the control group preferred the closed arms where they spent about 60% of the time and the...
center of the maze (35% of the time), whereas they spent only 5% of their time on the open arms (Fig. 2A). After the hypobaric treatment the time the mice spent in the open arms increased significantly to 36.2% ($F=6.230$, $P<0.01$), whereas the time they spent in the closed arms decreased to 22.6% ($F=1.514$, $P<0.002$). There was no significant change for time spent in the center of the maze. The number of OAE significantly increased ($F=4.571$, $P<0.0003$) in preconditioned mice, but there were no statistically significant changes in DIP or SAP.

To check whether the antidepressant-like effect observed in the tail suspension and elevated plus maze tests could be due to a general stimulation or increase in non-specific exploratory behavior, separate groups of mice were tested in an open field 24 and 48 h after preconditioning. The results presented in Table I demonstrate that this explanation may be rejected, since we found no significant differences in parameters characterizing mobility and exploratory behavior between control mice and those preconditioned with hypoxia ($P>0.05$).

The results of immunochemical NPY assays using the EIA test (Fig. 3) showed a significant increase of 71.7% in the concentration of NPY in the hippocampus 24 h after hypoxic preconditioning ($P<0.05$); however, 48 h after hypobaria the observed increase was found not to be statistically significant. No other brain regions showed any statistically significant differences in NPY content between control and preconditioned mice.

DISCUSSION

The results of this study demonstrate that preconditioning of mice with repeated mild hypobaric hypoxia reduces immobility in the tail suspension test and increases occupancy of the open arm in the elevated plus maze, without symptoms of a general stimulation or increase in non-specific exploratory behavior in the open field test. We interpret these results as a reflection of the antidepressant- and anxiolytic-like effects of hypoxic preconditioning. These behavioral changes are accompanied by an increase in the concentration of NPY in the hippocampus 24 h after preconditioning. Although previous studies using exclusively the rat model have described similar behavioral effects of such a treatment on shock-induced depression (Rybnikova et al. 2007a, 2007b), the results of this work, using mice and distinct experimental approaches, provides evidence that antidepressant- and anxiolytic-like effects of mild hypoxia are universal and may be detected using different animals and tests. Up-regulation of NPY in the hippocampus of mice preconditioned with hypobaric hypoxia may reflect the potential defense reaction.

To make our results comparable to the data previously published by Rybnikova and others (2007a, 2007b) we used the same protocol of hypoxic preconditioning that was also previously applied in our laboratory experiments inducing ischemic brain tolerance in Mongolian gerbils (Duszczyk et al. 2009). The main differences between our work and studies of Rybnikova
and coworkers is the use of other species of animals and the use of different experimental protocols and behavioral tests. In the experiments of Rybnikova and others (2007a, 2007b) the rats submitted to hypobaric training were exposed to unpredictable and inescapable foot shock in the learned helplessness paradigm, and then the degree of protection against the development of stress-induced persistent depressive symptoms was tested. In contrast, the present study used behavioral tests on mice previously submitted to hypobaric preconditioning only, without any additional stresses. The tail suspension test which we utilized here has been found particularly useful for assessing the behavioral effects of antidepressant compounds and of other manipulations relevant to depression in mice (Cryan et al. 2005). Tail suspension induces a strong acute stress in the animals and the test determines how they cope with an inescapable stressful situation. The posture of immobility in this test has been interpreted as “behavioral despair” (Porsolt et al. 1978), or as a reflection of “entrapment” known from clinical depression (Lucki 2001). Numerous studies have demonstrated that pharmacological intervention with antidepressants reduces the duration of immobility in mice submitted to the tail suspension test (Cryan et al. 2005).

In contrast, the elevated plus maze is a behavioral test that has been widely used to evaluate the anxiety level (Pinheiro et al. 2007, Godlevsky et al. 2014). This test was used by Rybnikova and others (2007a, 2007b), however in our present study it has been used in different contexts and at another period of experiments. In their previous studies (Rybnikova et al. 2007a, 2007b) animals were tested 11 days after exposition of rats to inescapable foot shock, i.e. 12 days after the last hypoxia, whereas here we tested mice 2 days after the last hypobaric session and without additional stresses. In addition to the time spent in open arms, for greater accuracy in characterizing anxiety behavior we also measured the time spent in closed arms and in the center, as well as the number of OAE. Moreover, in the present study measures of the elements of exploratory behavior related to risk assessment (DIP and SAP) (Rex et al. 2002, Ganu et al. 2011) were registered. Finally, in parallel with the behavioral experiments we studied changes in NPY immunoreactivity in the hippocampus of mice after hypobaric preconditioning.

The results of our experiments demonstrated that preconditioning of mice with three consecutive sessions of mild hypobaric hypoxia induced an antidepressant-like effect, that manifested itself as a reduction of the immobility time in the tail suspension test. However, it appears that this effect is short-lived, because although a statistically significant reduction of the immobility period was observed 24 h after preconditioning, the observed reduction was not statistically significant 48 h after hypoxia. This timing is comparable to the findings of Rybnikova and others (2007a, 2007b), who demonstrated that preconditioning rats with mild hypobaric hypoxia 24 h before inducing a depressive state provided a significant protective effect.

Data of the present study demonstrate the increased time spent in the open arms and the increased frequency of open arms entries (OAE) 48 h after preconditioning. These results reflect the fact that the significant anxiolytic-like effect of hypoxic preconditioning may persist longer than the antidepressant-like effect. However, Rybnikova and others (2007b) have shown that the anxiolytic-like effect of mild hypobaric hypoxia is limited in time and is not detectable in rats 12 days after hypoxic preconditioning. We failed to reveal any statistically significant effect of hypoxic preconditioning on the risk assessment behavior since DIP and SOP remained unchanged. The open field test demonstrated that there were no differences in the behavioral parameters characterizing mobility and exploratory behavior. This confirms that the antidepressant-like and anxiolytic-like effects that were observed in mice after mild hypobaric hypoxia cannot be attributed to increases in mobility or exploratory behavior. In addition, data from Rybnikova and others (2007b) shows that preconditioning with hypobaric hypoxia without addi-

![Fig. 3. The effect of preconditioning mice with mild hypobaric hypoxia on NPY concentration in frontal cortex, hippocampus and hypothalamus 24 h or 48 h after the last hypobaric session. Data are expressed as pg/mg protein. Bars represent means ±SEM (n=5–11); * – result significantly different from control (P<0.05, One Way ANOVA).](image-url)
tional stressors does not affect the locomotory activity of the animals.

Overall, the results of behavioral tests presented here, together with those from the literature (Rybnikova et al. 2007a, 2007b), demonstrate that the antidepressant-like and anxiolytic-like effects of preconditioning with mild hypobaric hypoxia may be induced in different species and may be visualized using various experimental approaches and behavioral tests. These data support the claims of Rybnikova and others (2008) who suggested that preconditioning with mild hypobaric hypoxia may be useful in clinical practice for the prophylaxis of stress-induced depressive episodes, and even their suggestion of its possible usefulness as complementary treatment to pharmacological therapy in other forms of depression.

The mechanism of antidepressant- and anxiolytic-like effects of preconditioning with hypobaric hypoxia is unclear. Previous studies point to alterations in the hippocampal expression of glucocorticoid receptors, in reactivity of the hypothalamic-pituitary-adrenal axis, and in intracellular signaling in preconditioned rats (Rybnikova et al. 2007a, 2007b, Baranova et al. 2010, 2012). Our experiments were aimed at a preliminary assessment of the NPY involvement in the mechanisms of this phenomenon. This supposition, which supplements and extends the explanation provided by Rybnikova and co-workers, has been based on numerous experimental data demonstrating the antidepressant and anxiolytic effects of NPY, mediated mainly by Y₁ receptors (Heilig 2004, Madaan and Wilson 2009, Morales-Medina et al. 2010). Research in humans has also provided data supporting the role of NPY in regulation of mood (Garcia et al. 2012, Morales-Medina et al. 2010). Studies on the mechanisms of disturbances in appetite and blood circulation at high altitudes have shown that both prolonged and acute hypobaric hypoxia leads to increased blood NPY concentration in humans and animals (Cheng et al. 1992, Knudtzon et al. 1989, Llanos et al. 2007). We were also encouraged by our previous results demonstrating a prominent, approximately 100% increase in the number of NPY-positive neurons in the hippocampus of gerbils submitted to hypobaric hypoxia (Duszczyk et al. 2009).

The immunochemical analysis of this study showed the NPY levels in the control mouse brain cortex, hippocampus and hypothalamus in the range of 2–3 ng/mg prot. These values are one order of magnitude lower than 10 pmol/mg prot. (43 ng/mg prot.), found by Ruohonen and others (2008) in mice hypothalamus using radioimmunoassay. These differences may be explained by distinct methods of NPY extraction and detection. We detected increase in the NPY concentration in the hippocampus of mice preconditioned with hypobaric hypoxia, albeit this effect was rather small. Our data indicate that NPY may be considered as a potential participant in the mechanism of the antidepressant- and anxiolytic-like effects of preconditioning with mild hypobaric hypoxia. However, further research is required to establish more precisely a role of NPY in the complex mechanism(s) of brain adaptation to various stressors, including hypobaric preconditioning.

CONCLUSIONS

Our behavioral data indicate that intermittent mild hypobaric hypoxia in mice induces antidepressant- and anxiolytic-like effects. A modest but significant increase in the content of NPY in the hippocampus was observed in mice after hypoxic preconditioning. These results may encourage further investigations as to the role of NPY in the mechanism of beneficial behavioral effects of hypobaric preconditioning.

ACKNOWLEDGEMENTS

Authors thank Dr. Robert Kuba Filipkowski for help in executing the tail suspension tests and Dr. Derek Martin, Edinburgh, U.K. for English editing of the manuscript. This study was supported by the Ministry of Science and Higher Education of Poland, scientific network no. 26/E-40/SN-023/2006/2007/2008, and by the statutory funds of the Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw.

REFERENCES

Baranova KA, Rybnikova EA, Samoilov MO (2012) Antidepressant effect of hypoxic preconditioning is associated with modification of expression of transcription

